Descrição da Disciplina

IT 213 - Simulação Monte Carlo Aplicada a Transporte Aéreo: A disciplina tem como objetivo capacitar os estudantes a compreender e aplicar os fundamentos da simulação computacional com ênfase nas operações e processos associados ao transporte aéreo. Serão abordados, de forma estruturada, os principais conceitos e técnicas da simulação de Monte Carlo, desde a geração de números e variáveis aleatórias até a construção, validação e análise estatística de modelos computacionais.

Inicialmente, serão discutidos os fundamentos teóricos da simulação e os aspectos que a diferenciam de outras abordagens analíticas. Em seguida, serão introduzidas as principais ferramentas para implementação de modelos estocásticos, com destaque para as linguagens de programação R e Python, utilizadas como suporte na modelagem dos dados de entrada e na análise dos resultados simulados.

A disciplina contempla tópicos essenciais como geração de variáveis aleatórias a partir de distribuições de probabilidade, elaboração de modelos conceituais e computacionais, verificação e validação de modelos, definição de período de aquecimento e número de replicações, além de técnicas de redução de variância. Ao final, os alunos aplicarão os conhecimentos adquiridos à simulação de problemas reais no setor aéreo, como operações aeroportuárias, logística humanitária, alocação de recursos e análise de desempenho de sistemas sob incerteza.

Essa abordagem visa não apenas o domínio técnico das ferramentas, mas também o desenvolvimento da capacidade crítica dos alunos para interpretar os resultados e propor soluções operacionais fundamentadas em experimentação virtual, contribuindo para a tomada de decisão em ambientes complexos e incertos.

Técnicas exploradas durante o curso: Introdução ao processo de simulação computacional. A Linguagem de programação R. Geração de números aleatórios. Modelagem dos dados de entrada com auxílio do R. Introdução a simulação de Monte Carlo. Geração de variáveis aleatórias. Simulação de distribuições de probabilidade com o R. Elaboração do modelo conceitual. Elaboração do modelo computacional. Verificação e validação dos modelos. Dimensionando aquecimento e replicações. Análise estatística dos resultados de uma simulação. Técnicas de Redução de Variância. Simulação de problemas em Transporte Aéreo.

Horário das Aulas: Sexta-feira 13:30-16:30

Horário de Atendimento para Dúvidas: com agendamento, Sala FO-250 (Prédio das Ciências Fundamentais) ou por videoconferência.

Informações de Contato: pamplona@ita.br

Livro-Texto e Referências

- I. ROBERT, Christian; CASELLA, George. Introducing Monte Carlo Methods with R. Springer Science & Business Media, 2009.
- 2. WU, Cheng-Lung; CAVES, Robert E. Modelling and simulation of aircraft turnaround operations at airports. Transportation Planning and Technology, v. 27, n. 1, p. 25-46, 2004. IRVINE, Daniel;
- **3**. BUDD, Lucy CS; PITFIELD, David E. A Monte-Carlo approach to estimating the effects of selected airport capacity options in London. Journal of Air Transport Management, v. 42, p. 1-9, 2015.

Resultados de Aprendizagem do Curso

Ao final do curso, os alunos deverão ser capazes de:

- Compreender os fundamentos teóricos e práticos da simulação de Monte Carlo, distinguindo-a de outras abordagens analíticas e reconhecendo suas aplicações em sistemas complexos, especialmente no transporte aéreo.
- 2. Construir e validar modelos conceituais e computacionais de simulação, utilizando a linguagem R para representar fenômenos estocásticos com base em dados reais ou simulados.
- Aplicar técnicas de geração de números e variáveis aleatórias, assim como simular distribuições de probabilidade relevantes para modelagem de incertezas operacionais.
- 4. Realizar análises estatísticas dos resultados de simulação, incluindo definição do número adequado de replicações, período de aquecimento e aplicação de técnicas de redução de variância.
- 5. Desenvolver e interpretar simulações aplicadas a problemas reais do transporte aéreo, tais como logística humanitária, operações aeroportuárias e alocação de recursos, propondo soluções com base em experimentação computacional.

Política de Avaliação

A avaliação da disciplina será composta por três componentes principais, totalizando 100% da nota final::

Atividade	Nota	Peso Relativo
Avaliação (Individual)	[0,10]	40%
Participação na Disciplina	[0,10]	10%
Artigo Científico	[0,10]	50%

- Avaliação (40%): A avaliação será aplicada no dia 20 de setembro de 2025, sem consulta, e abordará os conteúdos teóricos discutidos em sala de aula, especialmente aqueles relacionados à construção e validação de instrumentos, fundamentos de pesquisa e análise de dados.
- Participação na Disciplina (10%): A participação será avaliada com base no envolvimento do aluno nas aulas e na execução das atividades propostas.
- Artigo Científico (50%): O artigo científico será desenvolvido ao longo da disciplina, com base em um tema proposto pelo aluno, envolvendo os tópicos abordados no curso. Os alunos devem observar as políticas antiplágio e as diretrizes para o uso de Large Language Models (LLMs) na produção textual. Como regra geral, o artigo científico entregue com atraso não será aceito sem uma coordenação prévia por parte do aluno. Exceções podem ser consideradas caso a caso. Artigos escritos em inglês receberão um bônus de 0,5 pontos na nota.

Integridade Acadêmica no ITA

Todos os alunos devem aderir aos mais altos padrões de integridade acadêmica, conforme estabelecido no conceito de Disciplina Consciente. É proibido o envolvimento em plágio, fraude, deturpação ou qualquer

outro ato que constitua falta de integridade acadêmica. O descumprimento dessa norma por qualquer indivíduo não será tolerado. Aqueles que violarem esta política estarão sujeitos a ações administrativas adversas, incluindo o desligamento da instituição e medidas disciplinares.

Políticas da Disciplina sobre a utilização de *Large Language Models* (LLMs)

As políticas específicas da disciplina IT - 213 Simulação Monte Carlo Aplicada a Transporte Aéreo complementam, mas nunca substituem, as políticas gerais do Programa de Pós-Graduação em Engenharia de Infraestrutura Aeronáutica e do Instituto Tecnológico de Aeronáutica.

As Large Language Models (LLMs), como o ChatGPT; Gemini; Claude; entre outras, representam uma inovação tecnológica disruptiva que já fazem parte da realidade acadêmica e profissional contemporânea. Nesta disciplina, os alunos são <u>incentivados a encarar essas ferramentas como aliadas do processo de aprendizagem</u>, comparáveis a um companheiro de pesquisa que auxilia na formulação de perguntas, exploração de caminhos e consolidação do conhecimento — <u>e não como um substituto da vivência e do</u> esforço intelectual necessários ao aprendizado real.

Está autorizado o uso de LLMs para as seguintes finalidades:

- Pesquisa e levantamento de referências;
- Apoio na construção de questionários e roteiros de entrevista;
- Interpretação preliminar de dados;
- Geração de códigos para análise estatística (ex: em R ou Python);
- Correções linguísticas e sugestões de escrita.

Por outro lado, <u>não é permitida a utilização de LLMs para a redação automática do artigo científico final,</u> seja em sua totalidade ou em partes isoladas (como parágrafos, seções ou blocos de texto gerados integralmente por IA).

O texto deverá refletir a voz, a interpretação e o raciocínio dos próprios alunos. O uso das LLMs como apoio técnico ou gramatical é permitido, desde que não comprometa a autoria nem a integridade argumentativa e metodológica do trabalho.

O uso consciente, responsável e ético dessas tecnologias será valorizado como parte do amadurecimento acadêmico esperado nesta disciplina

Cronograma da Disciplina

O plano de Ensino do curso é um planejamento geral. Eventuais alterações poderão ser anunciadas pelos instrutores conforme necessário.

Semana	Dia	Tema	Observações	Robert & Casella
1	01/08	Apresentação da	Conceitos fundamentais, aplicações em aviação	
		Disciplina;		Cap. 1
		Introdução à		(Overview),
		Simulação e Monte		Cap. 3.1-3.2
		Carlo		
2	08/08	Geração de Números	Pseudorrandômicos,	Cap. 2.1.1 (Uniform
		Aleatórios	Mersenne Twister, seed	simulation)

Aplicada a Transporte Aereo					
3	15/08	Geração de Variáveis Aleatórias	Transformada inversa, aceitação-rejeição	Cap. 2 inteiro (Transformações, Aceitação–Rejeição)	
4	22/08	Estatística Aplicada à	Média, variância,	Cap. 4.1-4.2 (CLT,	
$\begin{vmatrix} 4 & 2 \end{vmatrix}$	22/08	Simulação	replicações, IC	variância, IC)	
5	29/08	Modelagem de Dados de Entrada com R	Histogramas, ajuste de distribuições	Cap. 2.2.3 (Mixtures), Cap. 3.10 (Ex. Pima)	
6	05/09	Simulação de Distribuições com R	Distribuições discretas e contínuas	Cap. 2, Cap. 3.4, Cap. 3.8–3.10	
7	12/09	Modelagem Conceitual e Computacional	Diagrama de eventos, construção de modelos	Introduzida indiretamente nos Caps. 3 e 4	
8	19/09	Prova Teórica I	Conteúdo semanas 1-7	Material abordado até o momento	
9	26/09	Técnicas de Redução de Variância	Antitéticos, controle, estratificação	Cap. 4.6 (Rao- Blackwell), 4.7 (Antitéticos)	
10	03/10	Verificação e Validação de Modelos	Aquecimento, convergência, replicações	Cap. 4.4-4.5 (Monitoring, Convergência)	
11	10/10	Análise Estatística dos Resultados	Boxplots, testes, gráficos de desempenho	Cap. 4.1–4.3 (Erro, IC, estimadores)	
12	17/10	Projeto Final – Orientações	Alinhamento de temas		
13	24/10	Simulação de Fila M/M/1	Aplicação em aeroportos	Aplicação prática – sem correspondente direto	
14	31/10	Feriado - Sem Aula	Dia de Finados		
15	02/11	Simulação de Operações de Solo em Aeroportos	Reabastecimento, pushback, catering	Aplicação prática – sem correspondente direto	
16	07/11	Simulação de ATO (Air Task Orders)	Pacotes militares, tempos de missão	Aplicação prática – sem correspondente direto	
17	14/11	Simulação de Logística Humanitária Aérea	Caso das enchentes do RS	Aplicação prática — sem	

IT 213 – Simulação Monte Carlo Aplicada a Transporte Aéreo Ementa

2025

				correspondente
				direto
				Aplicação prática
18	21/11	Otimização com	Eficiência operacional em	– sem
		Simulação	cenários aéreos	correspondente
				direto
19	28/11	Entrega e Apresentação do Trabalho Final	Avaliação final da disciplina	