

INSTITUTO TECNOLÓGICO DE AERONÁUTICA

CURSO: EDI 38 Concreto Estrutural I

PLANO DE DISCIPLINA

1- IDENTIFICAÇÃO

Disciplina	EDI 38 – Concreto Estrutural I			
Carga horária	Teoria	Exercícios	Laboratório	Estudo
semanal	4	0	1	5
Pré-requisitos	EDI-31, EDI-33 e EDI-37.			
Período	1º Profissional - 2º Semestre			
Docente (s)	Sérgio Gustavo Ferreira Cordeiro			

2- EMENTA

EDI-38 - Concreto Estrutural I. Requisitos: EDI-31, EDI-33, EDI-37. Horas semanais: 4-0- 1-5. Estados limites: conceituação, hipóteses, segurança, critérios de resistência, equações constitutivas - aço e concreto. Flexão normal simples: armadura simples e dupla. Flexão normal composta: armadura simétrica e assimétrica. Flexão oblíqua composta: estudo geral e simplificado. Estado Limite Último de Instabilidade: conceituação, aplicação das diferenças finitas e do pilar padrão.

3- OBJETIVOS

Fornecer subsídios técnicos para que, ao final da disciplina, o aluno seja capaz de:

Enunciar, manipular e criticar as hipóteses, equações básicas e processos de resolução do dimensionamento de seções transversais de concreto estrutural;

Dimensionar e analisar seções de concreto armado sujeitas a Flexão Normal Simples (FNS), Flexão Normal Composta (FNC) e Flexão Oblíqua Composta (FOC) como, por exemplo, lajes, vigas e pilares;

Fazer a verificação da estabilidade de pilares isostáticos de concreto estrutural; Analisar estruturas com o método dos elementos finitos (AEF).

4- RECURSOS E MÉTODOS

Aulas expositivas, exercícios resolvidos em sala de aula e listas de exercícios; Licença do MATLAB para elaboração dos códigos desenvolvidos ao longo do curso; Licença do FEMAP/NASTRAN para a Análise de Elementos Finitos (AEF).

5- AVALIAÇÃO

Notas bimestrais: 01 prova escrita (80%) + AEF (20%).

As provas deverão ser realizadas entre a 5a e a 6a semana de aula de cada bimestre e formalmente ocupam 4 (quatro) tempos de aula.

Tem sido feita uma experiência de prova em duas etapas: teórica (50%), presencial sem consulta, e numérica (50%), com consulta.

As notas referentes à Análise de Estrutura por Elementos Finitos (AEF) será baseada em relatórios parciais entregues ao longo de cada bimestre.

6- BIBLIOGRAFIA

Bibliografia: CORDEIRO, S.G.F. Concreto estrutural I. São José dos Campos: ITA, 2020. MENDES NETO, F. Concreto estrutural I. São José dos Campos: ITA, 2018. MENDES NETO, F. Concreto estrutural avançado: análise de seções transversais sob flexão normal composta. São Paulo: Pini, 2009. MENDES NETO, F. Tópicos sobre a Análise Não-Linear de Pórticos Planos de Concreto Armado. São Paulo: Escola Politécnica da USP, 2000. SANTOS, L. M. Estádo Limite Último de Instabilidade. São Paulo: USP, 1987. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR-6118: projeto de estruturas de concreto. São Paulo, 2014.

7- CRONOGRAMA AULAS TEÓRICAS

Semana	Conteúdo	Bibliografia
1	Introdução às estruturas de concreto armado	CORDEIRO, S.G.F. Concreto estrutural I. São José dos Campos: ITA, 2020.
2	Introdução às estruturas de concreto armado	
3	Características dos aços e do concreto	CORDEIRO, S.G.F. Concreto estrutural I. São José dos Campos: ITA, 2020.
4	Hipóteses do Estado Limite Último	CORDEIRO, S.G.F. Concreto estrutural I. São José dos Campos: ITA, 2020.
5	Flexão Normal Simples	CORDEIRO, S.G.F. Concreto estrutural I. São José dos Campos: ITA, 2020.
6	Flexão Normal Simples	
7	Flexão Normal Composta	CORDEIRO, S.G.F. Concreto estrutural I. São José dos Campos: ITA, 2020.
8	Flexão Normal Composta	
9	Flexão Normal Composta	
10	Flexão Oblíqua Composta	MENDES NETO, F. Tópicos sobre a Análise Não-Linear de Pórticos Planos de Concreto Armado. São

		Paulo: Escola Politécnica da USP, 2000.
11	Flexão Oblíqua Composta	
12	Flexão Oblíqua Composta	xxx
13	Estado Limite de Instabilidade	SANTOS, L. M. Estádo Limite Último de Instabilidade. São Paulo: USP, 1987.
14	Estado Limite de Instabilidade	XXX
15	Estado Limite de Instabilidade	xxx
16	Estado Limite de Instabilidade	xxx

8 CRONOGRAMA AULAS DE AEF

Semana	Conteúdo	Bibliografia
2	Introdução ao uso de MEF: Modelo de viga	CORDEIRO, S.G.F. Concreto estrutural I. São José dos Campos: ITA, 2020.
4	Projeto de ponte: Análise do sistema longarinas, vigas transversais e tabuleiro	
6	Modelo de um pavimento: Painel reforçado	
8	Flechas em vigas e lajes de concreto armado	
10	Flechas em vigas e lajes de concreto armado	
12	Pórtico 3D: Análise do sistema painéis reforçados e pilares	
14	Pórtico 3D: Análise do sistema painéis reforçados e pilares	

São José dos Campos, 29/07/2023