

2^a Prova de EDI-38 Concreto Estrutural I

Prof. Flávio Mendes Neto Outubro de 2013

Absolutamente sem consulta. A interpretação das questões faz parte da prova.

Justifique cientificamente suas afirmações e comente, criticamente, todos os resultados obtidos.

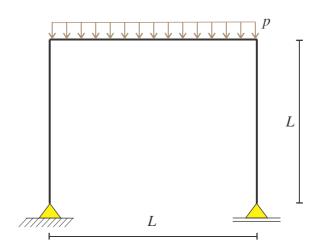
Durações máximas: parte teórica - 30 min; parte numérica 1 h 30 min

PARTE TEÓRICA

1ª Questão É óbvio que uma seção dimensionada para um par de esforços (N_d, M_d) não resiste, isoladamente, aos pares $(N_d, 0)$ ou $(0, M_d)$, certo?

 $2^{\underline{a}}$ Questão Faça um esboço, justificado, de uma curva de interação, no plano (N_d, M_d) , para uma seção de concreto duplamente simétrica somente com uma camada de barras em sua parte inferior $(cg < d_1 < h)$.

3ª Questão Considere uma estrutura como a esquematizada na figura. Discuta como poderia ser a disposição, sob o ponto de vista teórico, da armadura longitudinal de flexão (não se esqueça de apreciar as variações de sinal e de módulo dos esforços aplicados). Haveria alguma mudança na argumentação caso os apoios fossem trocados por engastes perfeitos?



Questão	1	2	3
Valor	1,0	1,0	1,0

Todas as questões valem um (1,0) ponto.

Adimensionais (FNC)

$$\nu = \frac{N_d}{\sigma_{cd} A_c} \qquad \mu = \frac{M_d}{\sigma_{cd} A_c h} \qquad \omega = \frac{A_s \ f_{yd}}{A_c \ \sigma_{cd}} \qquad \omega_i = \frac{A_{si} \ f_{yd}}{A_c \ \sigma_{cd}} \qquad p_i = \frac{A_{si}}{A_s} = \frac{\omega_i}{\omega} \qquad \alpha_i = \frac{\sigma_{si}}{f_{yd}}$$

$$\eta = \frac{R_{cc}}{\sigma_{cd} A_c} \qquad \eta_a = \eta \frac{a}{h} \qquad \beta_x = \frac{x}{h} \qquad \beta_i = \frac{d_i}{h} \qquad \delta = \frac{d'}{h} \qquad \beta_{cg} = \frac{cg}{h}$$

Equações de equilíbrio (FNC)

$$\nu = \eta + \sum_{i=1}^{nc} \omega_i \, \alpha_i$$
$$\nu \, \beta_{cg} - \mu = \eta_a + \sum_{i=1}^{nc} \omega_i \, \beta_i \, \alpha_i$$

Funções η e η_a para seção retangular (Diagrama PR: parabólico-retangular)

$$\eta = \left\{ \begin{array}{ccc} 0 & \text{Dom\'inio 1} \\ \frac{5\,\beta_x^2\,\left(3\,\beta_1 - 8\,\beta_x\right)}{3\,\left(\beta_1 - \beta_x\right)^2} & \text{Dom\'inio 2a} \\ \\ \frac{16\,\beta_x - \beta_1}{15} & \text{Dom\'inio 2b} \\ \\ \frac{17\,\beta_x}{21} & \text{Dom\'inios 3, 4 e 4a} \\ \\ \frac{125 - 882\,\beta_x + 1029\,\beta_x^2}{21\,\left(7\,\beta_x - 3\right)^2} & \text{Dom\'inio 5} \\ \\ \\ 0 & \text{Dom\'inio 5} \\ \\ \frac{5\,\beta_x^3\,\left(4\,\beta_1 - 9\,\beta_x\right)}{12\,\left(\beta_1 - \beta_x\right)^2} & \text{Dom\'inio 2a} \\ \\ \eta_a = \left\{ \begin{array}{ccc} 0 & \text{Dom\'inio 1} \\ \\ \frac{5\,\beta_x^3\,\left(4\,\beta_1 - 9\,\beta_x\right)}{12\,\left(\beta_1 - \beta_x\right)^2} & \text{Dom\'inio 2a} \\ \\ \frac{33\,\beta_x^2}{98} & \text{Dom\'inio 3, 4 e 4a} \\ \\ \frac{\left(5 - 49\,\beta_x\right)\left(37 - 49\,\beta_x\right)}{98\,\left(7\,\beta_x - 3\right)^2} & \text{Dom\'inio 5} \end{array} \right.$$

Alguns resultados e comentários

1ª Questão A afirmação é falsa. A justificativa pode se apoiar em uma curva de interação para a FNC, de preferência para uma seção transversal sem dupla simetria, partindo-se de um ponto qualquer da curva para os eixos coordenados. Há situações em que os novos esforços são internos à curva original e há situações em que não são, denotando segurança e insegurança, respectivamente.

 $2^{\underline{a}}$ Questão A curva da página 173 do livro "Concreto Estrutural Avançado", de nossa autoria, é um exemplo adequado. A justificativa, teórica, para o posicionamento da curva pode se amparar nos esforços resistentes da seção para linhas neutras ilimitadas $(-\infty \text{ e} + \infty)$.

3ª Questão Esperava-se um esboço da armadura, juntamente com o esboço, qualitativo, dos diagramas de esforços (força normal e momento fletor). A princípio, com os apoios apresentados, a barra horizontal estaria sob FNS e as verticais sob FNC (compressão uniforme, de fato). No caso de os apoios serem engastes haveria mudanças de magnitudes e sinais dos esforços, podendo todas as barras ficarem sob FNC com sinais variados.

2^a Prova de EDI-38 Concreto Estrutural I

Prof. Flávio Mendes Neto Outubro de 2013

Consulta livre (menos a seres humanos, próximos ou distantes), utilização de softwares gerais liberada. Utilização de programas e planilhas previamente confeccionados pelo próprio aluno liberada (entregar cópia eletrônica ao final da prova).

A interpretação das questões faz parte da prova.

Justifique cientificamente suas afirmações e comente, criticamente, todos os resultados obtidos. Sempre explicite a linha neutra na documentação da solução.

Parte numérica: duração máxima de 1 h 30 min

PARTE NUMÉRICA

Considere os seguintes dados:

- \bullet Coeficiente de ponderação das ações: $\gamma_F=1,40.$
- Aço CA-25 ($f_{yk} = 250 \text{ MPa}$; $\gamma_s = 1, 15$; $E_s = 210 \text{ GPa}$).
- Concreto C25, diagrama parabólico-retangular ($f_{ck}=25$ MPa, $\sigma_{cd}=0.85 f_{ck}/\gamma_c$ e $\gamma_c=1.40$).
- $\bullet\,$ Seção retangular com base b=0,19m e altura total h=0,50m.
- Peso específico do aço $\gamma_{\rm aço}=78,5~{\rm kN/m^3}.$ Custo do concreto (por m³): R\$ 246,23.
- Custo da forma (por m²): R\$ 13,68.
- Custo da armadura (por kg): R\$ 3,47.
- Se precisar transformar unidades de força, utilize a equivalência 1 kgf = 10 N.

 4^{a} Questão | Considere que a seção transversal tenha 4 camadas de barras iguais $(p_i = 0, 25 \text{ para } i = 1...4)$ com posicionamento $\beta_1=0,95;$ $\beta_2=0,90;$ $\beta_3=0,10$ e $\beta_4=0,05.$ Dimensione a taxa mecânica de armadura de arm ω para os seguintes esforços adimensionais:

Item	ν	μ
a)	-0,095	0,000
b)	0,044	0,062
c)	0,300	0,144
d)	0,567	0,158
e)	1,041	0,019

 $5^{\underline{a}}$ Questão Para o mesmo arranjo de armadura da questão anterior, e ainda considerando $8\phi 10$ (8 barras com diâmetro de 10 mm), calcule o maior momento fletor adimensional μ que a seção resiste quando:

- a) A força normal adimensional for $\nu = 1,000$.
- b) Qualquer valor de força normal ν puder ser considerado.

 $6^{\underline{a}}$ Questão | Considere que a seção transversal tenha 2 camadas de barras com posicionamento $\beta_1=0,95$ e $\beta_2 = 0.05$. Dimensione a área de armadura com a seção submetida a $\nu = 0.8$ e $\mu = 0.3$ para:

- a) Arranjo pré-fixado $(p_1 = p_2)$.
- b) Arranjo de armadura "livre": deixar p_1 e p_2 arbitrários, com metodologia tradicional (Zonas de Solicitação).
- c) Caso aplicável (se não for, justifique), arranjo de armadura "livre": deixar p_1 e p_2 arbitrários, otimizando a área total de armadura.

Todos os dez itens valem um (1,0) ponto.

 4^{a} Questão Todos estes problemas podem ser resolvidos com o otimizador (Não linear, aumentando-se a precisão para, por exemplo, 1×10^{-10}) obtendo-se o zero da função

$$(\nu - \nu_R)^2 + (\mu - \mu_R)^2 = 0$$

onde (ν,μ) são os esforços adimensionais aplicados e (ν_R,μ_R) são os resistentes, dados pelas equações de equilíbrio. As variáveis a serem alteradas seriam a taxa mecânica de armadura ω e a profundidade adimensional da linha neutra β_x . É importante forçar a armadura positiva nas restrições $(\omega \geq 0)$ e, ainda, desmarcar a opção de tornar variáveis irrestritas negativas (pois β_x tem sinal).

Os resultados principais obtidos foram:

Item	ν	μ	β_x	ω
a)	-0,095	0,000	-0,0541	0,0950
b)	0,044	0,062	0,1207	0,0961
c)	0,300	0,144	0,3706	0,0947
d)	0,567	0,158	0,6995	0,0939
e)	1,041	0,019	1,5098	0,0942

 $5^{\underline{a}}$ Questão A taxa de armadura é $\omega = 0,0947$. Ambos os itens podem ser resolvidos com o otimizador (mesmas observações feitas na questão anterior) maximizando-se o momento fletor resistente μ_R e alterando a profundidade adimensional da linha neutra β_x .

- a) Adicionar a restrição de $\nu_R=1$, como pede o enunciado. Os resultados encontrados foram $\mu_{\rm max}=0,0345$ para $\beta_x=1,2811$.
- b) Neste item não há a necessidade de qualquer restrição extra e os resultados encontrados foram $\mu_{\rm max}=0,1619$ para $\beta_x=0,6010$. Convém observar que a força normal adimensional, neste caso, é "livre" e, para a solução obtida, vale $\nu=0,4856$.

6ª Questão

- a) Dimensionamento clássico: com exceção do arranjo de armadura que mudou, os procedimentos são idênticos ao do item (a) da 4ª Questão. Os resultados obtidos foram $\beta_x = 0,8221$ e $\omega = 0,5674$.
- b) Aqui deve ser feita uma "pesquisa de Zona" (justificada), concluindo-se pela Zona C, onde a linha neutra deve ser arbitrada de forma consistente com a armadura superior comprimida e a inferior tracionada. A escolha usual de linha neutra é a fronteira entre os Domínios 3 e 4 que corresponde a $\beta_{x,\text{lim}}=0,7332$. O problema, assim definido, fica linear nas armaduras e obtem-se $\omega=0,4094$ (taxa inferior $\omega_1=0,1015$ e superior $\omega_2=0,3080$ notar que a apresentação dos resultados é feita de forma arredondada, que corresponde a porcentagens $p_1=0,2478$ e $p_2=0,7522$). Também seria possível usar o otimizador neste problema.
- c) Uma otimização buscando a área total mínima (ω) poderia ser feita, alterando as variáveis β_x , ω_1 e ω_2 (ou as porcentagens p_i). As restrições importantes seriam $\omega \geq 0$; $\omega_1 \geq 0$; $\omega_2 \geq 0$; $\nu = \nu_R$ e $\mu = \mu_R$. Efetuada a otimização obtem-se $\omega = 0,4094$ para $\beta_x = 0,6010$ (taxa inferior $\omega_1 = 0,04145$ e superior $\omega_2 = 0,35492$, que corresponde a porcentagens $p_1 = 0,1046$ e $p_2 = 0,8954$). Há, aqui, uma economia de 3,2% de área de aço em relação ao item anterior e de 30,1% em relação ao primeiro item.