

EDI-33 Materiais e Processos Construtivos

Propriedades

Frank Cabral de Freitas Amaral – 1º Ten.-Eng.º Instrutor

Programação

SEMANA	DATA	TÓPICOS
1	06/mar	APRESENTAÇÃO DO CURSO
	09/mar	TIPOS DE MATERIAIS E PROPRIEDADES
2	13/mar	AGREGADOS
	16/mar	
3	20/mar	AGLOMERANTES
	23/mar	
4	27/mar	CONCRETO
	30/mar	
5	3/abr	
	6/abr	
6	10/abr	
	13/abr	
7	17/abr	PROVA 1º BIMESTRE
	20/abr	
8	24/abr	AÇOS
	27/abr	
	29/abr a 6/mai	SEMANINHA

Definições

- Desempenho
- Vida útil
- Durabilidade
- Agente de degradação
- Mecanismos de degradação
- Manutenção
- Custo global

Engenharia Civil

- •
- •
- •
- •
- •
- •

Escolha do Material

- •
- •
- •

Tipos

- Amorfos
- Cimentosos
- Cerâmicos
- Compostos
- Cristalinos
- Dúteis
- Não-dúteis
- Elásticos
- Elastômeros
- Eletrônicos

Tipos

- Isolantes
- Magnéticos
- Metálicos
- Polímeros
- Plásticos
- Restauradores
- Semicondutores
- Termoplásticos
- Termo-rígidos
- Residuais

Propriedades

Materiais: requisitos de desempenho ao longo da vida de serviço!

- barragem
- ponte
- estrada
- pista de pouso
- pátio de aeronaves

Propriedades

• Físicas

Caracterização: densidade, porosidade, teor de vazios, teor de umidade, massa específica, permeabilidade, micro e macroestrutura, textura, cor e formato.

• Mecânicas

Resistência a tensões (tração, compressão, cisalhamento, flexão, torção, impacto) e deformações, ductilidade e elasticidade-plasticidade.

Químicas

Composição e potencial de reação: acidez, alcalinidade, resistência à corrosão, etc.

• Térmicas, elétricas, magnéticas, acústicas e óticas.

Solicitações

• Forças

Primeira Lei de Newton

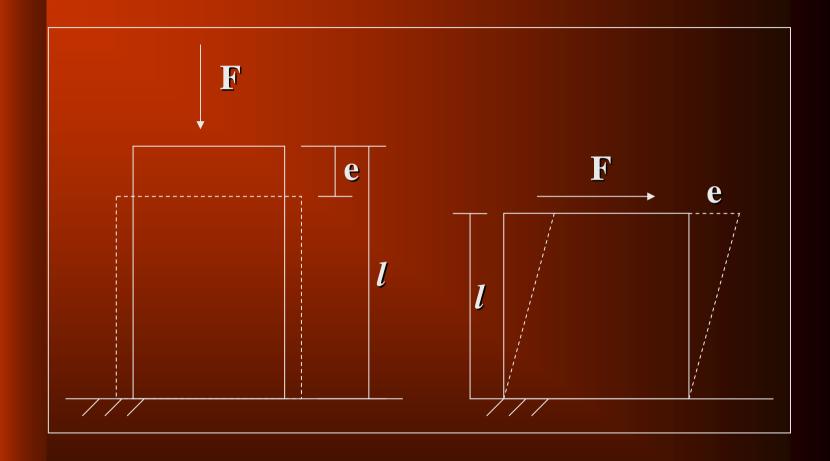
Terceira Lei de Newton

• Cargas

Forças externas

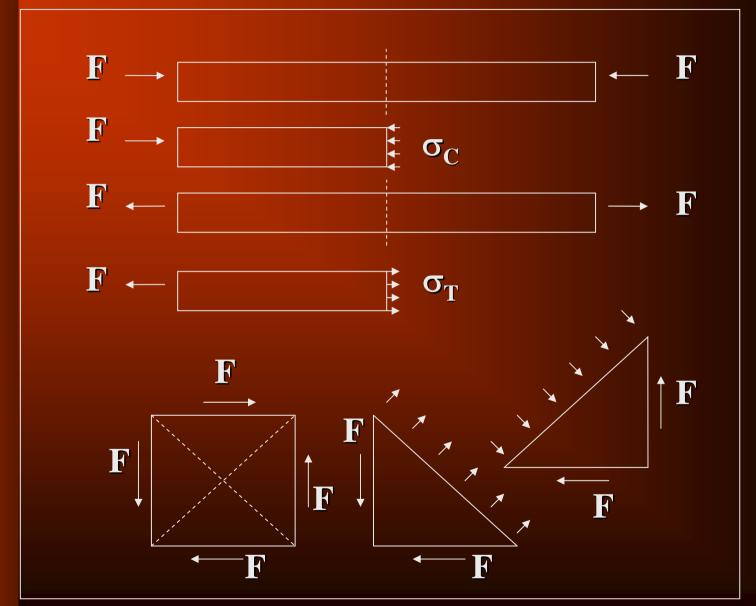
• Tensões

"Forças internas"


Tensão e deformação

- Ilustração com a borracha
 - ruptura: carga e deformação máximas
- Equilíbrio: forças externas e internas
- Deslocamento x Deformação
 - Deformation x Strain
- Tração x Compressão x Cisalhamento
- Coeficiente de Poisson (0,15 0,40)

Deslocamento x Deformação



Tensão e deformação

- Ilustração com a borracha
 - ruptura: carga e deformação máximas
- Equilíbrio: forças externas e internas
- Deslocamento x Deformação
 - Deformation x Strain
- Tração x Compressão x Cisalhamento
- Coeficiente de Poisson (0,15 0,40)

Tração x Compressão x Cisalhamento

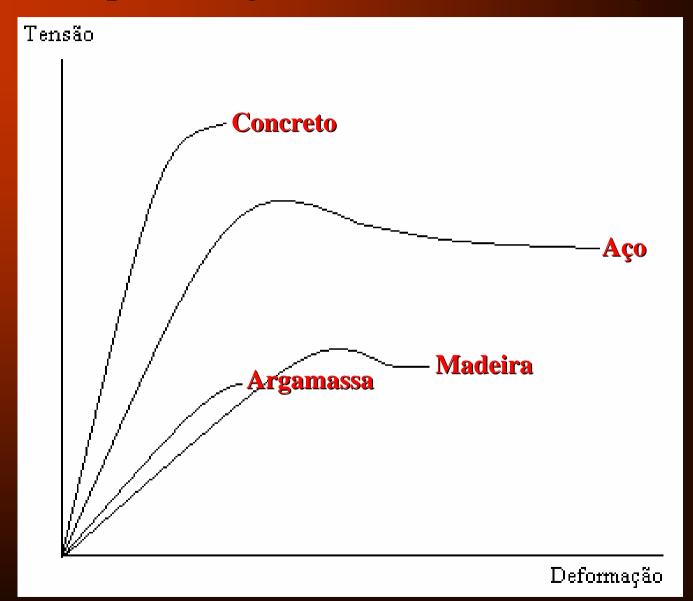
Tensão e deformação

- Ilustração com a borracha
 - ruptura: carga e deformação máximas
- Equilíbrio: forças externas e internas
- Deslocamento x Deformação
 - Deformation x Strain
- Tração x Compressão x Cisalhamento
- Coeficiente de Poisson (0,15 0,40)
 - relação entre def. lateral e axial

Exemplos: Coeficiente de Poisson

Material	ν
Alumínio	0,25
Ferro fundido	0,23 - 0,27
Concreto de cimento Portland	0,10-0,18
Cobre	0,31 - 0,34
Vidro	0,24
Chumbo	0,43
Aço	0,27 - 0,30
Agregado de rocha	0,20-0,34
Latão	0,32 - 0,35
Metais (regime plástico)	0,5
Concreto asfáltico	0,35

Módulo de Elasticidade


Tensão x deformação

Quanto maior a tensão necessária para promover uma determinada deformação, mais rígido o material

- Módulo de Elasticidade
 - Lei de Hooke (1678): $E = (\sigma/\epsilon)$
 - Módulo de Young (tração ou compressão)
 - Módulo de Rigidez (cisalhamento)
- $E_R = 0.5 \cdot E / (1+v)$

Exemplos: diagrama tensão x deformação

Exemplos: planos de ruptura

- Aço: escoamento
- Ferro fundido: plano inclinado
- Concreto: plano inclinado / cone de ruptura
- Argamassa: cone de ruptura (laterais)

Depende do ângulo de atrito interno e coesão!

Laboratório

- 13 de março, às 13:40
- 6 grupos (equipe x individual)

Ensaios: granulometria, massa específica, teor de umidade, speedy, equivalente areia, abrasão Los Angeles...

- Pré-lab
- Relatório
- Vestuário