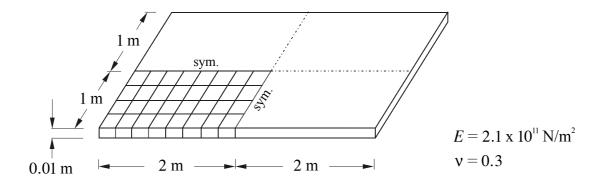

Workshop 4


Linear Static Analysis of a Simply-Supported Plate

Objectives

- Create a geometric representation of a plate.
- Use the geometry model to define an analysis model comprised of plate elements.
- Run an MSC/NASTRAN linear static analysis.
- View analysis results.

Model Description

Consider the simply supported rectangular plate above, of thickness $0.01~\mathrm{m}$ and sides $4~\mathrm{m}$ and $2~\mathrm{m}$, subjected to a uniformly distributed load of $100~\mathrm{N/m^2}$.

Exercise Procedure

Select **OK** / **Cancel**.

1. Start up MSC/NASTRAN for Windows 4.5 and begin to create a new model. Double click on the icon for the MSC/NASTRAN for Windows V4.5. On the Open Model File form, select New Model. Turn off the workplane: Tools / Workplane (or F2) / □ Draw Workplane / Done View / Regenerate (or Ctrl G). 2. Create a material called **mat** 1. From the pulldown menu, select Model / Material. Titlemat 1Young's Modulus 2.1e11Poisson's Ratio 0.3 Select **OK** / **Cancel**. NOTE: In the Messages Window at the bottom of the screen, you should see a verification that the material was created. You can check here throughout the exercise to both verify the completion of operations and to find an explanation for errors which might occur. 3. Create a property called **prop** 1 to apply to the members of the plate. From the pulldown menu, select Model / Property. Titleprop 1 Material mat 1 Note that the default element type is **Plate** element, **not parabolic**. Thickness, Tavq or T_1

0.01

4. Create the MSC/NASTRAN model for the plate $(8 \times 4 \text{ mesh of QUAD4})$.

From the pulldown menu, select Mesh / Between (or Ctrl B).

 Property
 prop_1

 Mesh Size / #Nodes / Dir. 1
 9

 Mesh Size / #Nodes / Dir. 2
 5

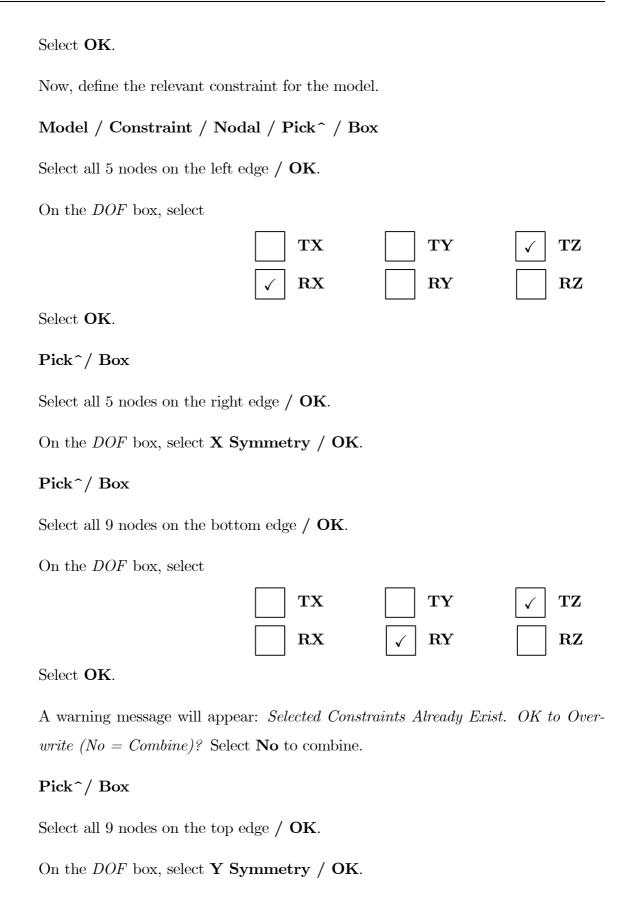
Select **OK**.

Note that **Quad** is the default element shape. So, **Plate** + **not parabolic** (linear) + **Quad** = **QUAD4**. Due to symmetry considerations, just one quarter of the plate will be modelled.

 $X: \hspace{1cm} Y: \hspace{1cm} Z: \hspace{1cm} {\cal C} \hspace{1cm} {\cal O} \hspace{1cm}$

Select **OK**.

Repeat this process for the other 3 corners.


To fit the display onto the screen, select **View / Autoscale / Visible** (or **Ctrl A**).

5. Create the model constraints.

Before creating the appropriate constraints, a constraint set needs to be created. Do so by performing the following:

Model / Constraint / Set

Title constraint_1

The same warning message above appears on the screen. Again, select ${f No}$ and, then, ${f Cancel}.$

6. Create the model loading.

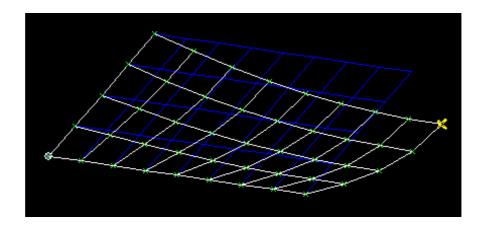
Like the constraints, a load set must first be created before creating the appropriate model loading.

	$\mathbf{Model} \ / \ \mathbf{Load} \ / \ \mathbf{Set} \ (\mathrm{or}$	Ctrl F2)			
	Title		loa	d_1	
	Select OK .				
	Now, define the 100 N/m^2 surface load.				
	Model / Load / Elemental / Select All / OK.				
	Highlight Pressure				
	Load	Pressure	100)	
	Select OK .				
	Face		2		
	Select OK / Cancel .				
	In order to visualize the loading, you may want to rotate the model.				
	View / Rotate (or F8) / Dimetric / OK.				
7.	Run the analysis.				
	File / Analyze				
	Analysis Type		Sta	tic	
	Loads		\checkmark	$load_1$	
	Constraints		\checkmark	constraint_1	
			\checkmark	Run Analysis	

Select **OK**. When asked if you wish to save the model, respond Yes. Be sure to set the desirable working directory. File Name work 4 Select Save. When the MSC/ NASTRAN manager is through running, MSC/ NASTRAN for Windows will be restored on your screen, and the Message Review form will appear. To read the messages, you could select Show Details. Since the analysis ran smoothly, we will not bother with the details this time. Then, select **Continue**. 8. Display the deformed plot on the screen. You may now display the deformed plot. First, however, you may want to remove the load and boundary constraint markers. View / Options / Quick Options (or Ctrl Q) \square Pressure / \square Constraint / Done / OK Plot the deformation of the plate.

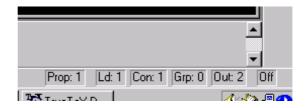
Deform

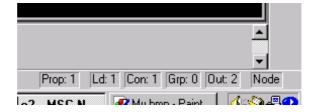
Deformed and Contour Data


Total Translation

View / Select (or F5)

Output Vectors / Deformation


Deformed Style


Select OK / OK.

What is the center deflection?

The answer is easily given clicking **Off**, at the right bottom side of the screen, and then selecting **Node**.

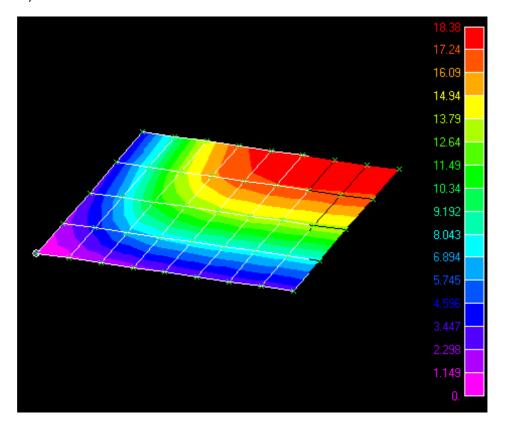
The required deflection will come out when the cursor is left next to the center node.

9. Display the plate X bending moment contour on the screen.

View / Select (or F5)

Deformed Style

Contour Style


Contour

Deformed and Contour Data

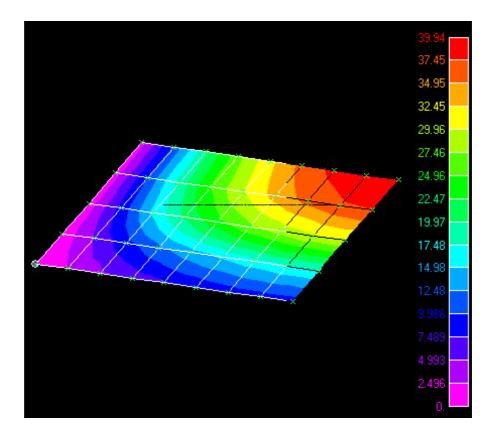
Output Vectors / Contour

7211 Plate X Bending Moment

What is the X bending moment at the center of the plate?

If you want, the procedure used to find the center deflection could be also applied here to answer this question.

10. Display the plate Y bending moment contour on the screen.


View / Select (or F5)

Deformed and Contour Data

 $Output\ Vectors\ /\ Contour$

7212 Plate Y Bending Moment

Select **OK** / **OK**.

What is the Y bending moment at the center of the plate?

The same procedure used to find the X bending moment could be also applied here to answer this question.

Return the model to the original display.

View / Select (or F5)

Deformed Style

None - Model Only

Contour Style

None - Model Only

Select \mathbf{OK}

This concludes the exercise.

File / Save

File / Exit.

Answer

	MSC/NASTRAN	Theoretical values
w	-8.425×10^{-4}	-8.427×10^{-4}
M_x	18.26228	18.540
M_y	39.94327	40.673

Would you like to improve the result by refining the mesh?

NOTE: The theoretical values are the Navier solutions of the Kirchhoff plate theory for $m,\,n=1,\,3,\,\ldots,\,101$ (EDI-32).