

INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA CIVIL-AERONÁUTICA

RELATÓRIO DE ESTÁGIO

Hugo Holz Ruela

São José dos Campos, 24 de novembro de 2010

FOLHA DE APROVAÇÃO

Relatório Final de Estágio Curricular aceito em 24/11/2010 pelos abaixo assinados:

Hugo Holz Ruela

Eliseu Lucena Neto Orientador/Supervisor do ITA

Francisco Alex Correia Monteiro Orientador/Supervisor do ITA

Eliseu Lucena Neto Coordenador do Curso de Engenharia Civil Aeronáutica

INFORMAÇÕES GERAIS

Estagiário

Nome do Aluno: Hugo Holz Ruela Curso: Engenharia Civil-Aeronáutica

Empresa

EMBRAER/ITA-IEE

Orientadores/Supervisores do ITA Francisco Alex Correia Monteiro

Eliseu Lucena Neto

Período

05/04/2010 a 30/07/2010 Total de horas: 160 horas

Introdução

Este estágio foi realizado no Projeto Métodos e Critérios de Análise e Cálculo Estrutural Usando Novas Tecnologias patrocinado pela Empresa Brasileira de Aeronáutica S.A. – EMBRAER e parte executado pelo Instituto Tecnológico de Aeronáutica – ITA. O estágio abordou apenas uma etapa desse projeto: o estudo comparativo da flambagem de painéis reforçados utilizando ligações rebitadas e ligações soldadas por fricção.

Ferramenta de Modelo

Devido ao grande número de painéis analisados neste estágio tornou-se necessário, afim de otimizar a confecção dos modelos, o desenvolvimento de uma ferramenta de trabalho. Esta ferramenta permite a criação de arquivos DAT que contém todos os dados necessários para a análise utilizando o código comercial NASTRAN (MSC, 2008). O programa permite a criação de painéis planos reforçados soldados ou rebitados sob compressão uniforme e axial.

Descrição

O Panel Tool v4.0 possui uma simples interface que permite a inserção dos dados do revestimento, dados do reforçador, dados da ligação reforçador-revestimento e refinamento do modelo.

			Revestir	nento	
			а	h	E_rev
			b		v_rev
			Reforça	dor	
			A	t_A	E_ref
			В	t_B	v_ref
			С	t_C	n_ref
			Rebite		
			в	Р	E_reb
			Malha d	o painel	
			EL da flang	ge	
			EL entre re	forçadores	
			EL entre re	bites	1
			Largura de	solda	1
			Fator kz		
			FOD		
			FUR		
🔲 Contato Linear 🔄 Ligação FSW 💟 ZTA	Diretório				Procurar
🗹 Contato Não Linear 🛛 🔽 Ligação Rebite	Arquivo	*.DAT		1	Gerar DAT

Primeiramente devem ser selecionados o tipo de ligação entre reforçador e revestimento, as opções de contato e se devem ser levadas em conta os efeitos da soldagem como, a degradação do material da zona de solda. Os campos de entrada são descritos a seguir:

Contato Linear	🔽 Ligação FSW	🔲 ZTA
Contato Não Linear	📃 Ligação Rebite	

Campo	Significado
Contato Linear	Esta opção deve ser selecionada caso se queira utilizar
	elemento de contato linear.
Contato Não Linear	Esta opção deve ser selecionada caso se queira utilizar
	elemento de contato não linear.
Ligação FSW	Esta opção deve ser selecionada caso a ligação seja sol-
	dada.
Ligação Rebite	Esta opção deve ser selecionada caso a ligação seja
	rebitada.
ZTA	Esta opção deve ser selecionada casa se queira considerar
	a largura de solda e a degradação do material da zona
	de solda.

Os dados do revestimento podem ser inseridos nos seguintes campos:

Revestime	nto		
а	h	E_rev	
b]	v_rev	

Campo	Significado
a	Comprimento do revestimento.
b	Largura do revestimento.
h	Espessura do revestimento.
E_{rev}	Módulo de Young do revestimento.
v_rev	Coeficiente de Poisson do revestimento.

Os dados do reforçador podem ser inseridos nos seguintes campos:

Reforçador		
Α	t_A	E_ref
В	t_B	v_ref
C	t_C	n_ref

Campo	Significado
А	Comprimento da flange do reforçador.
В	Comprimento da alma do reforçador.
С	Comprimento da aba do reforçador.
t_A	Espessura da flange do reforçador.
t_B	Espessura da alma do reforçador.
t_C	Espessura da aba do reforçador.
E_ref	Módulo de Young do reforçador.
v_ref	Coeficiente de Poisson do reforçador.
n_ref	Número de reforçadores incluindo os da borda (inteiro>
	0).

.

Caso a ligação rebite seja selecionada, pode-se inserir os dados do rebite nos seguintes campos:

Rebite		
d	р	E_reb

Campo	Significado
d	Diâmetro do rebite.
р	Passo da ligação rebitada em função do diâmetro do
	rebite.
E_reb	Módulo de Young do rebite.

Quando a ligação rebitada é selecionada, pode-se inserir os seguintes dados da malha do painel:

Malha do painel	
EL da flange	
EL entre reforçadores	
EL entre rebites	
Largura de solda	
Fator kz	
FCR	

Campo	Significado
EL da flange	Número par de elementos utilizados na flange (inteiro>
	0).
EL entre reforçadores	Número par de elementos utilizados entre reforçadores
	(inteiro > 0).
EL entre rebites	Número par de elementos utilizados entre dois rebites
	consecutivos (inteiro > 0).
FCR	Fator de carregamento (real, entre 0 e 1).

Caso a ligação seja soldada e a opção ZTA esteja selecionada os seguintes campos podem ser preenchidos:

Malha do painel	
EL da flange	
EL entre reforçadores	
EL ao longo do painel	
Largura de solda	
Fator kz	
FCR	

Campo	Significado	
EL da flange	Número par de elementos utilizados na flange (inteiro>	
	0).	
EL entre reforçadores	Número par de elementos utilizados entre reforçadores	
	(inteiro > 0).	
EL ao longo do painel	Número par de elementos utilizados entre dois rebites	
	consecutivos (inteiro > 0).	
Largura de solda	Largura da junta de solda em função da espessura da	
	flange $(1 \leq inteiro \leq 3)$	
Fator kz	Fator de degradação do material da zona de solda (real,	
	entre $0 e 1$).	
FCR	Fator de carregamento (real, entre 0 e 1).	

Por último, deve-se escolher o local e o nome do arquivo DAT através dos seguintes campos:

Diretório		(Procurar
Arquivo	*.DAT	(Gerar DAT

Campo	Significado
Diretório	Diretório onde será salvo o arquivo DAT.
Arquivo	Nome do arquivo DAT.

Clicando-se no botão **Gerar DAT**, será criado o arquivo DAT que contém todas as informações do painel. Em seguida o arquivo pode ser importado e analisado no NASTRAN (MSC, 2008).

Criação do Modelo

Neste tópico será abordado, passo a passo, a criação do modelo com a utilização da ferramenta descrita anteriormente. O painel indicado na Figura 1.1 possui as seguintes especificações:

Figura 1.1 Painel com cinco reforçadores.

a = 700 mm	b = 840 mm	$h_s = 1 \text{ mm}$
$w_a = 19.05~\mathrm{mm}$	$w_b = 19.05~\mathrm{mm}$	$w_c = 5.50~\mathrm{mm}$
$t_a = 1.27 \text{ mm}$	$t_b = 1.27~\mathrm{mm}$	$t_c=3.00~\mathrm{mm}$
$E_{rev} = 72400$ MPa	$\nu = 0.33$	
$E_{ref} = 71020$ MPa	$\nu = 0.33$	

O painel é considerado simplesmente apoiado e submetido a cargas de compressão unitária somente sobre o revestimento. A ligação é feita por FSW e o contato é não linear.

Primeiramente, seleciona-se o tipo de contato e a ligação utilizada. Seleciona-se então a opção **Contato Não Linear** e a opção **Ligação FSW**. Para este modelo será considerada a degradação do material da ZTA e portanto ativa-se a opção **ZTA**.

Contato Linear	🔽 Ligação FSW	🔽 ZTA
Contato Não Linear	📃 Ligação Rebite	

Insere-se os dados do revestimento:

Re	vestime	nto			
а	700	h	1	E_rev	72400
b	840			v_rev	0.33
Re	forçado	r			
А	19.05	t_A	1.27	E_ref	71020
В	19.05	t_B	1.27	v_ref	0.33
с	5.5	t_C	1.27	n_ref	5

a	700
b	840
h	1
E_rev	72400
v_rev	0.33

E logo após, insere-se os dados do reforçador:

Em seguida passa-se para a definição da malha utilizada. Para este modelo, cria-se uma malha de 2×24 para os reforçadores e uma malha de 12×24 para o revestimento entre reforçadores. A largura de solda foi considerada igual a $2 \times t_{af}$ e o fator de degração k_z igual a 70%. Como o carregamento é aplicado somente sobre o revestimento, o fator de carregamento FCR é igual a zero.

Malha do painel	
EL da flange	2
EL entre reforçadores	12
EL ao longo do painel	24
Largura de solda	2
Fator kz	0.7
FCR	0

EL da flange	2
EL entre reforçadores	12
EL ao longo do painel	24
Largura da solda	2
Fator kz	0.7
FCR	0

Por fim, escolhe-se o diretório e o nome do arquivo DAT. Clicando-se em **Gerar DAT** o arquivo será criado. Este modelo será salvo no diretório C:\ com o nome de *Painel1.DAT*.

Diretório	C:\	Procurar
Arquivo	Painel1.DAT	Gerar DAT

Conclusão

Durante o estágio foi possível colocar em prática conhecimentos adquiridos durante o curso, principalmente na área de estruturas e modelamento em elementos finitos. Os resultados obtidos durante o estágio possibilitaram a confecção e a publicação de um artigo, além do trabalho final de graduação.