Workshop 3

Linear Static Analysis of a Plate with a Circular Hole under Tension

Objectives

- Manually define material and element properties.
- Manually create the geometry for the plate using the given dimensions.
- Apply symmetric boundary constraints.
- Convert the pressure loading into nodal forces.
- Run the analysis.
- Compare results.

Model Description

The plate has a circular hole at the center and is submitted to a uniform tension of magnitude 100 psi at two opposite edges. The presence of the hole changes the uniform stress distribution, making the maximum tensile value, which occurs at A, slightly greater than four times the undisturbed value of 100 psi .

Because we have two axes of symmetry, we need consider only one quadrant. We shall use 160 elements of varying size and orientation with smaller elements appearing around the hole, specifically at A, where we can expect large gradients in the displacement field.

Exercise Procedure

1. Start up MSC/NASTRAN for Windows 4.5 and begin to create a new model.

Double click on the icon for the MSC/NASTRAN for Windows V4.5.

On the Open Model File form, select New Model.

Turn off the workplane:
Tools / Workplane (or F2) / \square Draw Workplane / Done
View / Regenerate (or Ctrl G).
2. Create a material called mat_1.

From the pulldown menu, select Model / Material.
Title \square
Young's Modulus
3e7
Poisson's Ratio
0.3

Select OK / Cancel.

NOTE: In the Messages Window at the bottom of the screen, you should see a verification that the material was created. You can check here throughout the exercise to both verify the completion of operations and to find an explanation for errors which might occur.
3. Create a property called prop_1 to apply to the members of the plate.

From the pulldown menu, select Model / Property.
Title
Material

mat_1
1
Note that the default element type is Plate element, not parabolic.
Thickness, Tavg or T_{1}

$$
0.125
$$

Select OK / Cancel.
4. Create the geometry for the inner circle.

Due to symmetry considerations, only a quarter of the geometry needs to be created.

Make the geometry in standard form:

Tools / Advanced Geometry

Geometry Engine

Select OK.

First, create two 45° arcs with radii of 1 in:

Geometry / Curve-Arc / Radius-Start-End

CSys	Basic Cylindrical			Z		OK
Start of Arc	$R 1$	T	0		0	
End of Arc	$R 1$	T	45	Z	0	OK
Radius	1		OK			

Create the second arc:
Start of Arc

OK
End of Arc
Radius

OK

Select Cancel.

To fit the display onto the screen, select View / Autoscale / Visible (or Ctrl A).

On your display, there should now be a quarter of a circle from 0° to 90°.

5. Create the geometry for the outer perimeter.

Create a first line curve:
Geometry / Curve-Line / Project Points

CSys		Basic Rectangular			7		OK
First Location	X	5	Y	0		0	
Second Location	X	5	Y	2	Z	0	OK
Create a second line curve:							
First Location	X	5	Y	2	7	0	OK
Second Location	X	0	Y	2	Z	0	OK

Select Cancel.

To fit the display onto the screen, select View / Autoscale / Visible (or Ctrl A).

6. Create the geometry for the surface of the plate.

First, turn on the curve labels:

View / Options (or F6).
Options
Curve
Label Mode
ID
Select OK.

Create 2 surfaces:

Geometry / Surface / Ruled

Select Cancel.

When we created the surfaces, two coincident curves were generated along the common edges. Merge these curves:

Tools / Check / Coincident Curves / Select All / OK
Options

Select OK.

View / Regenerate (or Ctrl G).

Notice that there is now only one curve along the common edge. This will make it easier to apply the mesh control to the surfaces.
7. Define appropriate mesh size for critical edges.

It is very important to know the direction of each edge of the surfaces to define an irregular mesh:

View / Options (or F6) / \checkmark Tools and View Style
Highlight Curve and Surface Accuracy / Show Arrows
Select OK.

The edges are pointing in the direction indicated in the figure.

Mesh / Mesh Control / Size Along Curve

Select curves 2, 4, 6, 8 and, then, OK.

Number of Elements
10
Node Spacing
Bias Factor

4

\checkmark Small Elements at End

Select OK.

The Bias Factor controls the spacing of nodes. Setting it to 4, with linear bias (
\checkmark
Biased), will make the first element four times as big as the last if you select
"Small Elements at End". The first element refers to the element at the first point of the curve, according to the directions shown in the figure.

Select curve 5 and, then, OK.
Number of Elements
Node Spacing
Bias Factor

10

4
Small Elements at Start

Select OK.
Select curves 1, 3 and, then, OK.
Number of Elements

Node Spacing

Select OK / Cancel.
8. Generate the finite elements.

Mesh the two surfaces:
Mesh / Geometry / Surface
Select both surfaces and, then, OK
Property
prop_1
Select OK.
9. Remove coincident grids from the model.

Additional nodes were created while generating QUAD4 elements. To eliminate these coincident nodes, do the following:

Tools / Check / Coincident Nodes / Select All / OK
When asked if you wish to specify an additional range of nodes to merge, respond No.

Options

\checkmark Merge Coincident Entities

Select OK.

As the Messages Window states, 11 nodes have now been merged.

To better view the display, do the following to remove the unnecessary labels:
View / Options / Quick Options (or Ctrl Q) / \square Point / \square Curve /
Surface / \square Node / Labels Off / Done / OK.

On your display, there should now be the figure shown at the bottom of page 3-2.
10. Create the model constraints.

Before creating the appropriate constraints, a constraint set needs to be created.
Do so by performing the following:

Model / Constraint / Set
Title

constraint_1

Select OK.

This constraint set will have 3 different constraints.

Now, define the first relevant constraint for the model.
Model / Constraint / Nodal / Method~/ on Curve
Select the left edge / OK.

On the DOF box, select X Symmetry / OK.

Next, define the second relevant constraint for the model.

Method ${ }^{\wedge}$ / on Curve

Select the bottom edge / OK.
On the DOF box, select Y Symmetry / OK.

Finally, define the third relevant constraint for the model.

Select the node on the bottom left corner / OK.
On the DOF box, fix TZ to restraint Z direction movement (just to remove the rigid body motion):

Select OK.

A warning message will appear: Selected Constraints Already Exist. OK to Overwrite (No = Combine)? Select No to combine and, then, Cancel.
11. Create the loading conditions.

Like the constraints, a load set must first be created before creating the appropriate model loading.

Model / Load / Set (or Ctrl F2)
Title

> load_1

Select OK.

Since the type of the given load (pressure) is not an available option for the edge of the plate, it must first be converted into nodal forces or distributed along the edge length and, then, applied to the model.

In this model, a 100 psi pressure force acting over the $0.25 \mathrm{in}^{2}(2 \mathrm{in} \times 0.125 \mathrm{in})$ can be converted to a total equivalent nodal force of 25 lbf . Since we are going to distribute this force over 2 in of edge length, the force per length will be $12.5 \mathrm{lbf} / \mathrm{in}$.

Model / Load / On Curve
Select the right edge / OK.
Highlight Force Per Length

Select OK / Cancel.

To visualize nodal forces:

Model / Load / Expand / OK
View / Options (or F6)
Category
Options
Load Vectors
Vector Length
Scale by Magnitude
Options
Label Mode

Load-Force

Load Value

Select OK.
View / Regenerate (or Ctrl G).
Note that the nodes at the corners are loaded half as much as the inner nodes because they are surrounded by half as much area.
12. Run the analysis.

File / Analyze
Analysis Type

Static

Loads

Constraints

Run Analysis
Select OK.

When asked if you wish to save the model, respond Yes.
Be sure to set the desirable working directory.
File Name

Select Save.

When the MSC/NASTRAN manager is through running, MSC/NASTRAN for Windows will be restored on your screen, and the Message Review form will appear. To read the messages, you could select Show Details. Since the analysis ran successfully, we will not bother with the details this time. Then, select Continue.
13. View the results of the analysis.

First, however, you may want to remove the load and boundary constraint markers.

View / Options / Quick Options (or Ctrl Q)Force / \square Constraint / Done / OK
View the X Normal Stress Fringe Plot:

View / Select (or F5)
Deformed Style
None - Model Only
Contour Style
Contour

Deformed and Contour Data
Output Vectors / Contour
7020 Plate Top X Normal Stress
Select OK / OK.

From the Stress Scale, what is the maximum σ_{x} stress and where it occurs?

Confirm the answer clicking Off, at the right bottom side of the screen, and then selecting Node.

Leaving the cursor next to the top of the circular hole, the stress value that comes out coincides with the maximum value shown in the Stress Scale.

This concludes the exercise.

File / Save

File / Exit.

Answer

	MSC/NASTRAN	Theoretical value
Maximum stress	431.3	430

Improved results could be obtained by making a finer mesh, particularly near the hole.

NOTE: The QUAD4 element provides the stress concentration factor 4.31 ($\approx 431.3 / 100$), which agrees accurately with $4.30(=430 / 100)$ given by the theory of elasticity (Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, 3rd edition, McGraw-Hill Kogakusha, Tokyo, page 95).

