Workshop 5

Linear Static Analysis of a

Simply-Supported Stiffened Plate

Objectives

- Create a geometric representation of a stiffened plate.
- Use the geometry model to define an analysis model comprised of plate and bar elements.
- Run an MSC/NASTRAN linear static analysis.
- View analysis results.

Model Description

Consider the square stiffened plate above of 20 in side and 0.1 in thickness, with I-beam stiffeners mounted as shown. The structure is simply supported on its four corners and subjected to a uniformly distributed load of 0.5 psi applied to the surface of the plate.

Hint: Because the centroidal axes of the stiffeners do not coincide with the mid-plane of the plate, you can account for this when you define the element properties for the stiffeners.

Young's Modulus	$10.3 \times 10^{6} \mathrm{psi}$
Poisson's Ratio	0.3
Plate Thickness	0.1 in
Bar Cross-Sectional Area	$0.38 \mathrm{in}^{2}$
I_{z}	$0.2293 \mathrm{in}^{4}$
I_{y}	$0.0168 \mathrm{in}^{4}$
J	$0.0013 \mathrm{in}^{4}$

Exercise Procedure

1. Start up MSC/NASTRAN for Windows 4.5 and begin to create a new model.

Double click on the icon for the MSC/NASTRAN for Windows V4.5.
On the Open Model File form, select New Model.

Turn off the workplane:
Tools / Workplane (or F2) / \square Draw Workplane / Done
View / Regenerate (or Ctrl G).
2. Create a material called mat_1.

From the pulldown menu, select Model / Material.

Title
Young's Modulus
Poisson's Ratio

10.3 e 6
0.3

Select OK / Cancel.

NOTE: In the Messages Window at the bottom of the screen, you should see a verification that the material was created. You can check here throughout the exercise to both verify the completion of operations and to find an explanation for errors which might occur.
3. Create a property called plate to apply to the members of the plate itself.

From the pulldown menu, select Model / Property.
Title
plate
Material
mat_1
Note that the default element type is Plate element, not parabolic.
Thickness, Tavg or T_{1}

$$
0.1
$$

Select OK.
4. Create a property called stiffener for the bar elements of the model.

Title	stiffener
Material	mat_1
	Elem / Property Type

Change the property type from Plate element (default) to Bar element.
Line Elements

> Bar

Select OK.

Area	0.38
I_{z}	0.2293
I_{y}	0.0168
J	0.0013

Be certain that you understand the assumed bar orientation. Now, choose up to 4 points on cross-section, defined in element local yz plane, where stresses will be computed.

Stress Recovery		
Points	y	z
1	1	0.5
2	1	-0.5
3	-1	-0.5
4	-1	0.5

Select OK / Cancel.
5. Create the MSC/NASTRAN model for the plate (12×10 mesh of QUAD4).

From the pulldown menu, select Mesh / Between (or Ctrl B).
Property
plate
Mesh Size / \#Nodes / Dir. 1

Mesh Size / \#Nodes / Dir. 2

11

Note that Quad is the default element shape. So, Plate + not parabolic (linear) + Quad $=$ QUAD4.

Select OK.

Corner 1

$$
X:
$$

Y :
Z:

Select OK.

Repeat this process for the other 3 corners.

To fit the display onto the screen, select View / Autoscale / Visible (or Ctrl A).
6. Create the MSC/NASTRAN model for the stiffeners (10 bar elements for each stiffener).

From the pulldown menu, select Mesh / Between (or Ctrl B).
Property

```
stiffener
```

Mesh Size / \#Nodes / Dir. 1 11

Corner Nodes

Select OK.

When selecting the corner nodes, you may (if you wish) manually type their numbers. However, it is easier to use the graphic interface and select the nodes on the
screen using the mouse. Click in the first Corner Nodes box and then select the nodes on the screen. Notice that the node nearest to the cursor is highlighted by a large yellow X - you don't have to click precisely on the node!

Now, specify the orientation vector for the bar elements.

	X	Y :	Z :
Base	0	0	0
Tip	0	0	1

Select OK.

NOTE: In MSC/NASTRAN, the way to construct the element coordinate system is by defining an orientation vector, as explained in Workshop 2. The element lies on the local x axis and the moments of inertia I_{1} and I_{2} are related to the bending about the local z and y axes, respectively.

Create the rest of the bar elements:

Mesh / Copy / Element / Method / Type
Select L Bar from the pulldown menu / OK
Repetitions
4

Select OK

	X	Y :	Z :
Base	0	0	0
Tip	5	0	0

Select OK.
7. Remove coincidents grids from the model.

Additional grids were created while generating bar elements. To eliminate these coincident grids, do the following:

Tools / Check / Coincident Nodes / Select All / OK

When asked if you wish to specify an additional range of nodes to merge, respond No.

Options

\checkmark
 Merge Coincident Entities

Select OK.

As the Messages Window states, 55 nodes have now been merged.
8. Offset the stiffeners to correctly represent the model.

To properly model the bar stiffness, we will need to incorporate the bar offset property.

In order to examine the offsets, you may want to rotate the model.

View / Rotate (or F8) / Dimetric / OK.

Modify / Update Elements / Offsets / Method / Type
Select L Bar from the pulldown menu / OK

\checkmark Update End A

$\checkmark \quad$ Set End B $=$ End A
Select OK

Select OK.

NOTE: The offset values is $1 / 2$ the height of the cross section and $1 / 2$ the thickness of the plate.

9. Create the model constraints.

Before creating the appropriate constraints, a constraint set needs to be created.
Do so by performing the following:
Model / Constraint / Set

Title

constraint 1

Select OK.

Now, define the relevant constraint for the model.

Model / Constraint / Nodal

Select the four extreme corners, Nodes 144, 13, 154 and 198 / OK.
On the $D O F$ box, select all translations.
$\checkmark \quad$ TX

TZ

Select OK / Cancel.
Notice that the constraint appears on the screen at Nodes 144, 13, 154 and 198, fixing the 1,2 and 3 directions (corresponding to TX, TY and TZ).
10. Create the model loading.

Like the constraints, a load set must first be created before creating the appropriate model loading.

Model / Load / Set (or Ctrl F2)

Title

```
load_1
```

Select OK.

Now, define the 0.5 psi surface load.
Model / Load / Elemental / Select All / OK.
Highlight Pressure
Load
Pressure 0.5

Select OK.
Face
Select OK / Cancel.
11. Run the analysis.

File / Analyze
Analysis Type

Static

Loads

Constraints

\checkmark constraint_1
\checkmark Run Analysis

Select OK.

When asked if you wish to save the model, respond Yes.

Be sure to set the desirable working directory.
File Name
work_5
Select Save.

When the MSC/ NASTRAN manager is through running, MSC/ NASTRAN for
Windows will be restored on your screen, and the Message Review form will appear.

To read the messages, you could select Show Details. Since the analysis ran smoothly, we will not bother with the detail this time. Then select Continue.
12. List the results of the analysis.

To list the results, select the following:
List / Output / Unformatted / Select All / OK
Unselect All Vectors and instead select T3 Translation

All Vectors / T3 Translation / OK

NOTE: You may want to expand the message box in order to view the results.

Answer the following questions using the results. The answers are listed at the end of the exercise.

What is the minimum displacement (maximum absolute value) in the Z direction and where it occurs?

Min. Lisp. $\mathrm{Z}=$ \qquad Nodes $=$ \qquad

Also, repeat the List / Output / Unformatted procedure above to find the answer to the second question.

What is the maximum vol Mises stress on the top of the plate?
Max. non Wises Stress $=$ \qquad
13. Display the deformed plot on the screen.

Finally, you may now display the deformed plot. First, however, you may want to remove the load and boundary constraint markers.

View / Options / Quick Options (or Ctr Q)
Pressure /Constraint / Done / OK

Plot the deformation of the structure.

View / Select (or F5)
Deformed Style
Deform

Deformed and Contour Data
Output Vectors / Deformation
Total Translation
Select OK / OK.

14. Add the contour plot of von Mises stress to the deformed plot.

View / Select (or F5)
Contour Style

Contour

Deformed and Contour Data
Output Vectors / Contour
7033 Plate Top von Mises Stress
Select OK / OK.

Return the model to the original display.
View / Select (or F5)
Deformed Style

> None - Model Only

Contour Style
None - Model Only
Select OK

This concludes the exercise.

File / Save

File / Exit.

Answer

Min. Disp. Z	-1.10626 at nodes 7 and 176
Max. von Mises Stress	13518.5

Would you like to improve the result by refining the mesh?

NOTE: The von Mises stress is defined as

$$
\sigma_{e}=\sqrt{\frac{1}{2}\left[\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{x}-\sigma_{z}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}\right]+3\left(\tau_{x y}^{2}+\tau_{x z}^{2}+\tau_{y z}^{2}\right)} .
$$

It is an invariant quantity with respect to rotation of the coordinate axes to which the stress is referred. Some failure theories state that yielding begins when σ_{e} reaches a limiting value. Since it is common to neglect $\sigma_{z}, \tau_{x z}$ e $\tau_{y z}$ for plates,

$$
\sigma_{e}=\sqrt{\sigma_{x}^{2}-\sigma_{x} \sigma_{y}+\sigma_{y}^{2}+3 \tau_{x y}^{2}}
$$

